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Summary

 

We propose an extension to Nomarski differential interference
contrast microscopy that enables isotropic linear phase imag-
ing. The method combines phase shifting, two directions of
shear and Fourier-space integration using a modified spiral
phase transform. We simulated the method using a phantom
object with spatially varying amplitude and phase. Simulated
results show good agreement between the final phase image
and the object phase, and demonstrate resistance to imaging
noise.
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Introduction

 

Differential interference contrast (DIC) is a popular method
for easily imaging optical path length changes in microscopic
specimens (Pluta, 1989). This allows rapid inspection of
unstained objects, such as biological tissues in transmission
or surface heights in reflection.

Although DIC is known as a phase imaging technique, four
major problems persist: (1) standard DIC systems are qualita-
tive in nature, with a non-linear response to optical path
length gradients in the specimen; (2) the DIC output intensity
is a mix of  amplitude and phase gradient contrast; (3) for
many applications it is useful to obtain the actual phase of  the
specimen, whereas DIC gives a directional phase gradient; and

(4) it is desirable that any phase reconstruction method be
straightforward, non-iterative and yet robust.

Solving these problems requires a method that:
1 has a linear response to specimen phase gradient,
2 isolates the phase gradient from the object amplitude

signal,
3 isotropically integrates the phase gradient to obtain the

phase, and
4 is robust and non-iterative.

Several approaches to meeting these goals have been pro-
posed in recent years. Phase shifting DIC is a quantitative optical
approach to isolating the phase gradient by shifting the DIC
prism bias (Hariharan & Roy, 1996; Cogswell 

 

et al

 

., 1997; Xu

 

et al

 

., 2001). Although phase shifting DIC relies on a geomet-
rical optics approximation of  DIC imaging in order to isolate
the phase, Ishiwata 

 

et al

 

. (1996) demonstrated an alternative
method for isolating the phase based on a partially coherent
model. Their method approximates an integral with respect to
the bias, by recording four images each with a different bias,
then multiplying the image intensity by the sine of  the DIC
prism bias, and finally adding the images together to isolate
the phase.

Shimada 

 

et al

 

. (1990) briefly outline a method that at first
glance solves the main three problems of  linearity, phase isola-
tion and isotropic integration. They demonstrated phase
retrieval from a series of  DIC images with changing prism bias
and shear direction. However, the details are not clearly speci-
fied for their phase shifting and phase integration steps. In
addition, their method is designed for reflection DIC, and
implicitly assumes a constant object amplitude.
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Approaches involving iterative computation that also only
partially solve the first three problems include line integration
and deconvolution (Kam, 1998), variance filtering and
directional integration using iterative energy minimization
(Feineigle 

 

et al

 

., 1996), and rotational diversity (Preza, 2000).
The last of  these techniques involves taking several rotated
DIC images and combining them using iterative deconvolution.
Non-iterative yet anisotropic methods include direct deconvo-
lution (van Munster 

 

et al

 

., 1997) and the half-plane Hilbert
transform (Arnison 

 

et al

 

., 2000), which is a qualitative Fourier-
space approach to integrating the phase gradient.

To date no author has outlined a full method that completely
addresses all four problems outlined above. In this communi-
cation we detail a combined optical and computational exten-
sion of  DIC that solves these major problems, resulting in a
phase image that is linearly proportional to the object phase
and that has a laterally isotropic response to specimen phase.

 

Method

 

Our method combines four techniques. The first technique is
conventional DIC microscopy. For a complex specimen ampli-
tude of  the form 
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)], the 2D DIC image intensity
is given by
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 is the corresponding
phase difference between those two positions, and 2

 

θ

 

 is the
optical DIC bias (Pluta, 1989; Cogswell & Sheppard, 1992).
Here we assume geometrical optics and the Born approxima-
tion, but we do not assume a constant object amplitude. A
schematic of  a DIC microscope is shown in Fig. 1.

The second technique is phase shifting DIC (Hariharan &
Roy, 1996; Cogswell 

 

et al

 

., 1997; Xu 

 

et al

 

., 2001). This tech-
nique retrieves a linear phase gradient through phase shifting
by rotating the bias 2

 

θ

 

. The bias may be conveniently set by first
inserting a quarter wave plate before the analyser. Rotating
the analyser then rotates the bias (Hariharan, 1993). We can
then obtain the phase gradient in the 

 

x

 

 direction using
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 = tan

 

−

 

1

 

, (2)

where four DIC images 

 

f

 

 have been recorded at biases of
2

 

θ

 

 = 0, 

 

π

 

/2, 

 

π

 

 and 3

 

π

 

/2. We have now removed both the
object amplitude and vignetting from the signal and obtained
a linear phase gradient in the 

 

x

 

 direction. This step also
removes many potential phase-independent system errors,
such as weak spots on the camera or non-uniform illumina-
tion. But we have so far only imaged the component of  the
phase gradient that is parallel with the shear direction (van
Munster 

 

et al

 

., 1998).

The third technique is to repeat the previous two steps with
the shear rotated to obtain 

 

∆φ

 

y

 

. The shear direction may be
changed by rotating either the specimen or the DIC prisms
by 90

 

°

 

. We note that a recently announced variant of  DIC
called total interference microscopy (Carl Zeiss, Germany) is
designed to allow easy rotation of  the shear angle. Combina-
tions of  DIC with multiple shear directions and phase shifting
have been published previously (Hartman 

 

et al

 

., 1980; Shimada

 

et al

 

., 1990; Preza 

 

et al

 

., 1998; Preza, 2000). However, in those
papers a simpler phase shifting technique was applied that
assumed a constant object amplitude.

Using the Fourier shift theorem, we can write down the
Fourier transforms of  our phase gradients
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where 
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 are the spatial frequency co-ordinates, 
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denotes a two-dimensional (2D) Fourier transform, and
capitalization denotes a Fourier transformed function.

This sets the stage for the fourth technique: using Eqs (3)
and (4) to obtain the phase 

 

φ

 

(

 

x

 

,

 

y

 

). We apply a Fourier-space
integration approach that is direct, straightforward and rea-
sonably accurate for images that do not contain discontinuities,
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Fig. 1. Optical layout of  a DIC microscope. In addition to the standard DIC
imaging components, a quarter wave plate is shown, which enables
convenient adjustment of  the DIC bias.
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such as biological phase images. We begin by combining the 
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and 
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 phase gradients to form a complex function
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We then perform a 2D Fourier transform on 
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) and apply
the Fourier shift theorem to give
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An inverse Fourier transform of  
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) gives the desired phase
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). We note that the field of  2D phase unwrapping deals
with a similar problem, which can be solved using a range of
direct and iterative methods (Ghiglia & Pritt, 1998; Volkov

 

et al

 

., 2002).
For small shear distances 
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 to approxi-
mate Eq. (7) with
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n) = 4πi∆x(m + in). (8)

This is equivalent to approximating the phase gradients
∆φx and ∆φy with the partial derivatives ∂φ/∂x and ∂φ/∂y, and
then applying the Fourier derivative theorem.

Summarizing the algorithm steps we have:
1 DIC imaging giving f,
2 phase shifting giving ∆φx,
3 shear rotation giving ∆φy, and
4 Fourier phase integration giving the desired phase φ.

Results

We have carried out simulations to evaluate the full method.
We used a coherent paraxial imaging model, which has been
shown to give reasonably accurate predictions for DIC (Preza
et al., 1999). However, extending our model for this simulation
to include partial coherence and vectorial diffraction should
not pose any fundamental difficulties.

The phantom object we simulated is shown in Fig. 2(a,b),
with a transmission amplitude varying from 80% to 100%
and a phase varying from 0 waves to 0.3 waves. The illuminat-
ing beam was monochromatic with wavelength λ = 550 nm,
imaging the sample through a 0.5-NA lens. The shear of  the
DIC Wollaston prism was set at 2∆x = 2∆y = 1 µm.

DIC imaging was modelled using fast Fourier transforms
(FFTs) with 1024 × 1024 pixels including windowing and
padding, with the subsequent image being 363 × 363 pixels
corresponding to a 25 × 25 µm region of  the object. DIC was
simulated using the pupil functions

Px(m,n) =  −2i  sin(θ + k∆xm) (9)

Py(m,n) = −2i  sin(θ + k∆yn) (10)

for shear in the x and y directions, respectively, where k = 2π/
λ. We added random noise to the intensity of  each simulated
DIC image, generated using a uniform distribution scaled to
fit between 0 and 10% of  the intensity range of  the image. An
example simulated image is shown in Fig. 2(c). Note the image

Φ
∆ ∆
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m n
xm yn

G m n
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0 if [sin(2 ), sin(2 )] = [0,0]
( , )
( , )
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π π

Fig. 2. Linear phase imaging simulation results. (a) Object transmission
amplitude. (b) Object phase. (c) Simulated DIC image with shear in the x
(horizontal) direction, bias 2θ = 3π/2 and artificial imaging noise at 10%
of  the signal. (d) Phase-shifted DIC image ∆φx. This step isolates the phase
gradient from the DIC image. (e) Final retrieved phase from our algorithm.
The object amplitude, noise and directional phase shading have all been
removed by our algorithm, leaving an image that is a close match to the
object phase shown in (b). (f ) Phase error between the normalized object
phase and the normalized retrieved phase. Note the only large errors are
where the phase object meets the upper and lower edges of  the image. The
width of  the field of  view is 25 µm.
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contains a mixture of  amplitude and phase information, with
the amplitude information geometrically distorted owing to
the asymmetrical pupil function in Eq. (9). We used this
DIC imaging model to simulate and compute steps 2 and 3 of  the
algorithm. The phase gradient in the x direction ∆φx is shown
in Fig. 2(d).

The final step, Eqs (6) and (7), was carried out using
726 × 726 pixel FFTs, after mirror reflecting the phase gradi-
ent image to reduce edge discontinuity effects significantly, as
described by Ghiglia & Pritt (1998, pp. 191–192). The mirror
reflection was implemented by creating a larger image gr with
four reflected copies of  g(x,y) inside it:

(11)

before applying a Fourier transform to obtain G(m,n). We also
windowed H(m,n) to avoid amplifying high-frequency noise in
the image, by setting H(m,n) = 0 for spatial frequencies outside
the aperture of  the simulated imaging system. Steps 1–3 took
54 s to execute on an AMD Athlon 1.4-GHz PC, and performing
step 4 took 4 s .

The final phase image φ is shown in Fig. 2(e). This image
shows we have extracted only the phase from the phantom
object, with no visible corruption by either the object ampli-
tude or random noise. After normalizing both the object phase
and the retrieved phase, a normalized image of  the error
(Fig. 2f ) and a line plot (Fig. 3) show good agreement between
the phase image and the phase of  the object, with a maximum
error of  17% at the edge of  the image. The mean squared error
is 1.5 × 10−3.

Discussion

The retrieved phase image is qualitatively excellent. However,
certain errors persist, mostly at the top and bottom edges of
the image. The error in those regions is caused by the intersec-
tion of  the object with the image boundary. These Fourier edge
artefacts might be avoided when acquiring images experimen-
tally by placing the spatially varying parts of  the object
entirely within the field of  view. However, avoiding such object
clipping is not always possible, which is why we have deliber-
ately placed parts of  our simulated object across the image
boundary. The edge artefacts could also be removed during
processing by using an improved phase integration technique
at the cost of  increased complexity and computation (Ghiglia
& Pritt, 1998).

The results demonstrate that our method has considerable
resistance to imaging noise. The retrieved phase image has
no streaking artefacts, in contrast with the real-space line
integration techniques described by Kam (1998) and Shimada
et al. (1990). By windowing H(m,n) at the same spatial
frequency cutoff  as that imposed by diffraction imaging, we
quenched any high-frequency artefacts introduced by simu-
lated signal noise and the phase retrieval algorithm.

For simplicity in explaining our algorithm, Eqs (1) and (2)
assume geometrical optics. However, our imaging simulation
included diffraction, which will attenuate high spatial fre-
quencies in the phase gradient and thereby introduce addi-
tional error in the retrieved phase. Yet despite our simulated
object phase having a broad spatial frequency spectrum, the
Fourier edge artefacts noted above produced larger errors than
the geometrical optics basis of  our algorithm. Supplementing
our method with a deconvolution method that accounts

Fig. 3. A 1D line plot through Fig. 2, vertically
downwards from the image centre. Shown are the
object amplitude, object phase, DIC image with shear
in the x direction and the final phase image from our
algorithm. The last three values have been normalized
to enable comparison. The horizontal axis is in
micrometres and the vertical axis is in normalized
units. The retrieved phase has been effectively isolated
from the object amplitude and signal noise. The error
due to Fourier edge artefacts increases as the plot
moves away from the centre of  the image.
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for the effects of  diffraction would produce more accurate
results, effectively adding the ability to deal with spatially
varying amplitudes to the approach by Preza (2000). Such
deconvolution methods are generally iterative, thereby increas-
ing the complexity and computation time relative to our non-
iterative method.

Careful consideration of  sampling is required to maintain
high accuracy. We are assuming that the phase gradient ∆φx is
not too large. Unless

∆φx < π (12)

the DIC phase signal in Eq. (1) will wrap around. An
additional limit is imposed by diffraction (Sprague & Thompson,
1972):

∆φx/2∆x < k  sin α. (13)

For the system we have simulated, Eq. (12) is a tighter
constraint on ∆φx than Eq. (13). The size of  the diffraction spot
provides a tighter limit on ∆φx than the shear distance only if
the shear distance 2∆x is less than half  the width of  the bright-
field point spread function (PSF), where the PSF width is
defined as λ/sin α (Sprague & Thompson, 1972). Vignetting will
also affect the signal for large phase gradients.

An alternative to linear phase imaging is quantitative phase
microscopy (Barty et al., 1998). This method obtains the axial
intensity derivative using defocus and converts it to separate
amplitude and phase images using the transport of  intensity
equation (TIE). One important difference to our technique is
that the TIE image contrast for fine phase details decreases
with higher condenser apertures (Barone-Nugent et al., 2002;
Sheppard, 2002), whereas DIC imaging gives the best contrast
and resolution at the largest condenser apertures.

It is interesting to note that the phase integration method
in Eqs (5–7) is related to the Hilbert transform, especially
when expressed in the approximate form in Eq. (8). Hd may be
rewritten as

Hd(m,n) = 4πi∆x (14)

Applying the spiral phase term exp[iarctan(n/m)] in Fourier
space has been proposed as a 2D version of  the Hilbert trans-
form, which is traditionally defined in 1D only (Larkin et al.,
2001). It is also known as a complex Riesz transform. This 2D
Hilbert transform is isotropic, as compared with the anisotropic
2D half-plane Hilbert transform outlined by Arnison et al.
(2000). Although both the modified spiral phase transform in
Eq. (14) and the 2D Hilbert transform proposed by Larkin et al.
are isotropic, our modified spiral differs by virtue of  the amplitude
weighting, present in Eq. (14) as the square root term.

In conclusion, we have detailed an extension of  DIC that
enables isotropic linear phase imaging using phase shifting,
two directions of  shear and non-iterative Fourier phase

integration incorporating a modified spiral phase transform.
Simulated results show good agreement between the final phase
image and the object phase, for a 2D phantom object with
spatially varying amplitude and phase. The method can in prin-
ciple be used with any DIC imaging system, with potential
applications including biological microscopy, 3D visualization,
surface profiling, refractive index profiling and X-ray micros-
copy (David et al., 2002; Kaulich et al., 2002).
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