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Abstract

We calculate the 3D vectorial optical transfer function directly from the vectorial pupil function, without making the

paraxial assumption nor assuming radially symmetric pupils. Our model uses a single autocorrelation integral with

Cartesian pupil co-ordinates to calculate the transfer function. Results for Herschel and aplanatic systems are pre-

sented. We discuss the meaning and application of a vectorial transfer function as a tool for analysing high aperture

incoherent microscopy modes including fluorescence and transmission.
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1. Introduction

The transfer function is an important tool in
optical design, where it is used to evaluate the
performance of a given optical system. The optical
transfer function (OTF) for a linear, space-in-
variant system is given by the Fourier transform of
the intensity point spread function (PSF). Even if
the system is not linear or space-invariant, the
Fourier transform of the intensity PSF is a useful
measure of the system performance, and is often
termed the OTF. The 3D OTF describes the action

of a lens in terms of spatial frequencies in the 3D
PSF produced at the focus. By determining the
system OTF, together with a model for the re-
sponse of the object to incident light, we can build
up a model for the system as a whole.

Maximising the performance of high resolu-
tion microscopy requires increasingly accurate
models for the high numerical aperture lenses
used, for the effects of their apodisation func-
tions, and for any aberrations introduced by the
the specimen. Vectorial theory for the accurate
calculation of the high aperture PSF has been
available for a long time [1–3]. Yet despite the
popularity of Fourier optics for modelling low
aperture systems, the field of high aperture vec-
torial transfer functions remains relatively unex-
plored.
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Frieden [4] first derived the scalar 3D OTF as
an autocorrelation using the paraxial approxima-
tion. This autocorrelation provides a method for
calculating the OTF directly from the pupil func-
tion. This is much simpler than first obtaining the
PSF and then performing a Fourier transform –
especially in 3D. Frieden’s work was extended by
Sheppard et al. [5] to cover the scalar high nu-
merical aperture (‘‘high NA’’) case by explicitly
avoiding the paraxial assumption. This work de-
rived analytical expressions, assuming cylindrical
symmetry in the pupil function. However, model-
ling arbitrary aberrations and pupil functions, and
indeed using a vectorial approach taking account
of the asymmetry of incident polarised light, re-
quires a more general non-cylindrical model.

An alternative approach is to calculate the
autocorrelation as a multiplication in Fourier
space, allowing the use of the fast Fourier transfer
(FFT) algorithm. This method was applied to
vectorial pupil functions by Sheppard and Larkin
[6], resulting in a vectorial OTF. This is a useful
method, especially for 2D projections. However
calculation using 3D FFTs would be awkward,
delicate and time consuming due to the need for
careful consideration of sampling issues, accuracy
and the large 3D arrays required.

A vectorial OTF was also presented by Ur-
ba�nnczyk [7], but the analysis was restricted to a 2D
OTF for low angle systems. The earliest mention
of an incoherent scalar OTF with an axial di-
mension was by Mertz [8, pp. 101–102].

Our approach in this paper is to expand the
development of two papers by Sheppard et al.
[5,6], generalising where necessary to full 3D
Cartesian co-ordinates, in order to avoid the as-
sumption of radial symmetry. We present general
descriptions of the vectorial lens pupil functions.
This pupil function description is then used in an
autocorrelation to form the vectorial OTF, which
may be geometrically interpreted as the volume of
overlap between two spherical shells.

We derive general formulas for the volume of
overlap, which do not assume radial symmetry,
resulting in a single integral. This equation is
straightforward, if time consuming, to calculate,
and serves as a useful alternative to the Fourier
transform method [6]. We then plot the vectorial

OTF for various cases. Finally we discuss the im-
plications and potential uses of a vectorial OTF.

2. Vectorial pupil function

The theory of Richards and Wolf [3] describes
how to determine the electric field near to the focus
of a lens which is illuminated by a plane polarised
quasi-monochromatic light wave. Their analysis
assumes very large values of the Fresnel number,
equivalent to the Debye approximation. We can
then write the equation for the vectorial amplitude
PSF ~EEð~xxÞ of a high NA lens illuminated with a
plane polarised wave as the Fourier transform of
the complex vectorial pupil function ~QQð~mmÞ [9],

~EEð~xxÞ ¼ � ik
2p

Z Z Z
~QQð~mmÞ expðik~mm �~xxÞd~mm: ð1Þ

Here k ¼ 2p=k is the wave number, k is the
wavelength, ~mm ¼ ðm; n; sÞ is the Cartesian pupil co-
ordinate, and ~xx ¼ ðx; y; zÞ is the focal co-ordinate.
The vectorial pupil function describes the effect of
a lens on the polarisation of the incident field, the
complex value of any amplitude or phase filters
across the aperture, and any additional aberration
in the lens focusing behaviour from that which
produces a perfect spherical wavefront converging
on the focal point.

Because we are describing the behaviour of
electromagnetic waves, they must obey the Max-
well equations, giving an important constraint –
the homogeneous Helmholtz equation for time-
independent vectorial wave fields,

r2~EEð~xxÞ þ k2~EEð~xxÞ ¼ 0; ð2Þ
assuming a constant refractive index in the focal
region.

By expressing the Helmholtz equation in Fou-
rier space, we can determine the electromagnetic
constraints on the pupil function ~QQð~mmÞ. Applying

the Fourier relationship r2~EEð~xxÞ () � j~mmj2~QQð~mmÞ,
we have

ðj~mmj2 � k2Þ~QQð~mmÞ ¼ 0; ð3Þ

which means that the pupil function is only non-
zero on the surface of a sphere with radius k,
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~QQð~mmÞ ¼ ~PP ð~mmÞdðj~mmj � k2Þ: ð4Þ
This is known as the Ewald sphere in the theory of
X-ray diffraction.

For a practical quasi-monochromatic wave, k
cannot have purely a single value, so the spread of
wavelengths in the illumination light gives a small
finite thickness to the spherical shell. For this paper
we examine the monochromatic case and assume a
thin shell of thickness dk and take the limit dk ! 0.

Because the pupil function only exists on the
surface of a sphere, we can slice it along the s ¼ 0
plane into a pair of functions

~QQð~mmÞ ¼ ~QQð~mmÞ k
s
d s
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � l2

p �
þ ~QQð~mmÞ k

s
d s
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � l2

p �
; ð5Þ

representing forward and backward propagation.
Here we have introduced a radial co-ordinate
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
. The k=s factor accounts for the

change in projected thickness of the spherical shell
for declination angles away from the s axis, a side-
effect of rewriting the delta function in terms of s
rather than the radius j~mmj.

Now we examine the axial projections ~PPðm; nÞ
of the pupil function,

~PPþðm; nÞ ¼
Z 1

0

~QQð~mmÞds; ð6Þ

~PP�ðm; nÞ ¼
Z 0

�1
~QQð~mmÞds; ð7Þ

which represent forward and backward propaga-
tion, respectively. Together these 2D functions
give a complete description of the 3D pupil func-
tion ~QQð~mmÞ. Restricting our attention to the forward
propagation case, we can write

~PPþðm; nÞ ¼
Z 1

0

~QQð~mmÞ k
s
d s
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � l2

p �
ds ð8Þ

¼ ~QQ m; n; sþð Þ 1

sþ
; ð9Þ

where we have normalised the radius to k ¼ 1 and
indicated the constraint on s to the surface of the
sphere with sþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
.

The aperture of the lens is represented by slicing
a cap off the top of the sphere. The angle a sub-
tended by the cap at the centre of the sphere is

related to the numerical aperture NA and the re-
fractive index n of the imaging medium (such as
air, water or immersion oil) by

sin a ¼ NA

n
ð10Þ

as shown in Fig. 1.
For incident light which is plane-polarised

along the x axis, we can derive a vectorial strength
function ~aaðm; nÞ, from the strength factors used in
the vectorial PSF integrals [3,6,10]

~aaðm; nÞ ¼
ðm2sþ þ n2Þ=l2
�mnð1� sþÞ=l2

�m

0
@

1
A; ð11Þ

where we have converted from the spherical polar
representation in Richards and Wolf to Cartesian
co-ordinates. We show an example case for~aaðm; nÞ
in Fig. 2.

We can now model polarisation, apodisation
and aperture filtering as amplitude and phase
functions over the projected pupil,

~PPþðm; nÞ ¼
1

sþ
~aaðm; nÞSðm; nÞT ðm; nÞ ð12Þ

representing forward propagation only (a6 p=2),
where Sðm; nÞ is the apodisation function, and
T ðm; nÞ is any complex transmission filter applied
across the aperture of the lens. This transmission

Fig. 1. A cross-section through the pupil sphere in the ðm; sÞ
plane.
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factor can also be used to model focusing aberra-
tions.

For uniform focusing, the Herschel condition,
the apodisation function is simply

Shðm; nÞ ¼ 1: ð13Þ
Microscope objectives are usually designed to obey
the sine condition, giving aplanatic imaging [11],
for which we write the apodisation as

Ssðm; nÞ ¼ cos1=2 h ð14Þ
¼ ffiffiffiffiffi

sþ
p

: ð15Þ

3. Three-dimensional vectorial optical transfer func-
tion

For incoherent imaging, we are interested in
using the OTF to describe the frequency compo-
nents of the intensity ~EE �~EE� of the PSF. From (1)
and the Fourier autocorrelation theorem [12],

jf ð~xxÞj2 ()
Z Z Z

F ~mm

 
þ ~mm0

2

!
F � ~mm

 
� ~mm0

2

!
d~mm

ð16Þ

(where ~FF ð~mmÞ is the Fourier transform of ~ff ð~xxÞ), we
can obtain the OTF ~CCð~KKÞ by taking the autocor-
relation of the pupil function ~QQ,

Cð~KKÞ ¼
Z Z Z

~QQ ~mm
�

þ 1
2
~KK
�
� ~QQ� ~mm

�
� 1

2
~KK
�
d~mm:

ð17Þ

The spatial frequency ~KK ¼ ðm; n; sÞ may be repre-
sented geometrically as the shift of one copy of the
pupil sphere cap relative to the other. The total
value of the integral for a given spatial frequency
~KK is given by the total volume of intersection of the
shifted spherical shells, multiplied at each inter-
section point by the values of the pupil functions at
that location.

The spheres intersect in a circle perpendicular to
the direction of the shift between them, which we
call the circle of intersection, as shown schemati-
cally in Fig. 3. When the spheres are shifted so far
that they no longer intersect, the value of the OTF
for that shift must be zero, giving the absolute
spatial frequency cutoff.

At any given point along the circle of intersec-
tion, the intersection between the spherical shells

Fig. 2. The vectorial strength factors ~aaðm; nÞ for linearly polarised light propagating in the forward direction, mapped onto the

spherical pupil caps, with a ¼ p=3.

Fig. 3. 3D views of the shifted spherical pupil caps for K ¼ ð0:8; 0:2; 0:2Þ and a ¼ p=2. The intersection can be seen as the arc of a

circle.
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has a rhombic cross-section (Fig. 4). Therefore for
any pupil shift ~KK we need to find a general equa-
tion for the circle of intersection, so that we can
find the value of the shifted pupil functions along
the circle, and also an equation for the area of the
rhombic cross-section.

For convenience we denote the total length of
the pupil shift as K

K ¼ j~KKj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 þ s2

p
: ð18Þ

Cross-sections of the geometry for the intersecting
spheres are shown in Figs. 5 and 6. The shifted
pupil spheres can be described using vectors as

j~mm ~KK=2j ¼ 1 ð19Þ
allowing us to solve for the radius of the circle of
intersection of the two spheres

r0 ¼ j~rr0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

4

r
: ð20Þ

If we can fully specify the circle of intersection
using a vector equation for one case, we can use
vector scaling and rotation to produce the circle of
intersection for any given ~KK. Setting ~KK0 ¼ ðK; 0; 0Þ,
the circle of intersection for this case is

~rr0ð~KK0; bÞ ¼
0

r0 sin b
�r0 cos b

0
@

1
A; ð21Þ

where b is introduced as a parameter to isolate a
point on the circle by its angle with the s axis.

We now generalise for arbitrary ~KK. Changes in
the length of ~KK are accommodated already by Eq.
(21). Rotation of ~KK whilst keeping b ¼ 0 at the
lowest s co-ordinate on the circle can be described
using a pair of counter-clockwise Euler rotations,

Fig. 4. The rhombic area of overlap between two spherical

pupil caps.

Fig. 5. A cross-section through the intersecting spheres for a given offset between them of ~KK. For the purposes of this figure, we assume

n ¼ 0. The radius r0 of the arc of intersection is shown here as OM. Q1 is the projection of P1 from Fig. 6, the endpoint of the arc of

intersection where b ¼ b1.
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~RRnðhÞ ¼
cos h 0 � sin h
0 1 0

sin h 0 cos h

0
@

1
A; ð22Þ

~RRsð/Þ ¼
cos/ sin/ 0
� sin/ cos/ 0

0 0 1

0
@

1
A ð23Þ

first about the n axis, then around the s axis, giving
a general form for the circle of intersection,

~rr0ð~KK; bÞ ¼ ~RRs½� arctanðn=mÞ�
�~RRn½p=2� arccosðs=KÞ�~rr0ð~KK0; bÞ ð24Þ

¼
r0 1

lK ms cos b � nK sin b½ �
r0 1

lK ns cos b þ mK sin b½ �
�r0 l

K cos b

0
B@

1
CA; ð25Þ

where arctanðn=mÞ takes account of which quad-
rant ðm; nÞ is in.

Finally, we need to incorporate the rhombic
shape of each intersection area along the circle of
intersection (Fig. 4). By geometry, this shape will
be constant around any given circle, but will vary

according to the shift ~KK between the pupils. The
area A of the rhombus is given by

Að~KKÞ ¼ ðdkÞ2

Kr0
ð26Þ

for K > 0, giving a line integral. For K ¼ 0 the
integral becomes a surface integral proportional to
dk. For infinitely thin shells, the line and surface
integrals cannot be numerically compared. Since
we are obviously more interested in the range
K > 0, we focus on the line integral in this paper,
for which Cð~00Þ ! 1. This represents the average
value of the PSF intensity, which diverges due to
the spatially unbounded behaviour of the PSF in
Eq. (1).

Having accounted for the changing cross-sec-
tion, we can now recast the autocorrelation using
the projected vectorial pupil function ~PPþð~mmÞ from
Eq. (12), and integrate along an arc of the circle of
intersection, giving an unnormalised equation for
the autocorrelation

CUnNormð~KKÞ ¼
ðdkÞ2

K

Z b1

�b1

~PPþ½~rr0ð~KK; bÞ þ 1
2
~KK�

�~PP �
þ½~rr0ð~KK; bÞ � 1

2
~KK�db; ð27Þ

where b1 is the highest possible angle b on the
circle of intersection for a given aperture a, shown
as MOP1 in Fig. 6, and defined below in Eq. (33).
This allows us to integrate along the complete arc
of intersection between the spheres.

Two-dimensional (2D) and one-dimensional
(1D) OTFs are usually normalised against the zero
frequency value. However, for the 3D case, Eq.
(27) gives a singularity at Cð~00Þ. Instead we choose
to normalise against the total volume of the OTF.
By the Fourier definite integral theorem, this is
equivalent to the central value of the intensity
PSF, which we easily determine [3]. We use uni-
form (Herschel) apodisation for determining the
normalisation. Setting j~EEð~00Þj2 ¼ 1, the normalisa-
tion factor is

NðaÞ ¼ 1

4
ð3

�
þ cos2 aÞ sin4 a

2

�2

: ð28Þ

We now arrive at a normalised form of the 3D
vectorial OTF that is easy, albeit time consuming,
to calculate

Fig. 6. The circle of intersection, in the plane along the line MO

that is perpendicular to the ðm; sÞ plane of Fig. 5 (again as-

suming n ¼ 0 for the purposes of the figure). The arc of inter-

section is shown as P1MP2, which varies with spatial frequency
~KK and aperture angle a. For a constant pupil, the length of this

arc, 2b1ð~KK; aÞ, is proportional to the strength of the transfer

function for a given spatial frequency ~KK.
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Cð~KKÞ ¼ 1

KNðaÞ

Z b1

�b1

~PPþ½~rr0ð~KK;bÞ þ 1
2
~KK�

�~PP �
þ½~rr0ð~KK; bÞ � 1

2
~KK�db: ð29Þ

Note that we have made no assumptions about the
symmetry of the pupil function ~PP nor any as-
sumptions of low aperture, and therefore this
equation is suitable for calculating the 3D vecto-
rial OTF with arbitrary pupil functions and aper-
tures. However, there remains some symmetry in
Cð~KKÞ by virtue of the fact that we defined it as the
Fourier transform of a real function, the intensity
PSF. This constraint results in Hermitian symme-
try in the OTF,

Cð~KKÞ ¼ C�ð�~KKÞ: ð30Þ
It is helpful to note that the angles h1;2 at the
centres of the spheres between the s axis and the
point of intersection, as shown in Fig. 5, are given
by

cos h1;2ð~KK; bÞ ¼ �~rr0ð~KK; bÞ �~̂ss~ss�
s
2

¼ r0
l
K

cos b � s
2
: ð31Þ

We now need to find the appropriate limits on the
integration to ensure we only calculate in physical
zones, avoiding regions where the spherical caps
do not intersect. These conditions define the spa-
tial frequency cutoff:
1. If the spheres are shifted by more than twice

their radius, then they will never intersect.
Therefore

K 6 2: ð32Þ
2. The aperture will set a limit jbj6 b1 on the

length of the arc of the circle of intersection.
This limit can be found by geometry, substitut-
ing h1 ¼ a into Eq. (31) and solving for b

b1ð~KK; aÞ ¼

arccos K
lr0
ðjsj
2
þ cos aÞ

n o
;

if K
lr0

jsj
2
þ cos a

��� ���6 1

0; if Re K
lr0
ðjsj
2
þ cos aÞ

n o
> 1

p; if Re K
lr0
ðjsj
2
þ cos aÞ

n o
< �1:

8>>>>>>>>><
>>>>>>>>>:

ð33Þ

The inequality conditions cover cases where the
full spheres intersect, but the aperture a trun-
cates the caps before that point, or for regions
where for large apertures a > p=2 the arc of
intersection completes a full circle.

3. It is useful for certain calculations to know the
spatial frequency cutoff in terms of limits on ~KK,
which may be determined using [5]

2ðl sin a � jsj cos aÞ ¼ K2: ð34Þ

4. Results

We evaluated Eq. (29) for Herschel and sine
apodisations at a very high aperture
(a ¼ 2p=5 ) NA ¼ 0:95 in air) to explore the
OTF behaviour under conditions unsuitable for
modelling with low NA techniques. Calculations
were performed using standard Mathematica in-
tegration routines, on a Linux system with an
AMD Athlon 1.4 GHz processor. Large plots such
as the one in Fig. 8 took about 4 h, while Fig. 9
took 20 min. A major speed boost could be ex-
pected if the integration was coded in C instead of
using Mathematica.

Evaluating the vectorial OTF gives substantial
numerical territory to explore. Each 3D point
within the spatial frequency cutoff has a scalar

Fig. 7. A schematic of the 3D vectorial OTF for a ¼ 2p=5 with

Herschel apodisation. The mesh surface indicates the spatial

frequency cutoff, outside which the OTF is zero. This surface

has been sliced at n ¼ 0, revealing the amplitude Cðm; 0; sÞ on

that plane of the 3D OTF, after taking the sum of all vector

components.
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value which may be split up into 3 contributions
from the vectorial components of the pupil,

C ¼ QxHQ�
x þ QyHQ�

y þ QzHQ�
z ð35Þ

¼ Cx þ Cy þ Cz: ð36Þ

The symbol H denotes autocorrelation. A gen-
eral overview of the shape of the OTF is given in
Fig. 7, showing the surface of the cutoff and the

total value of the OTF for a slice through the
function.

Fig. 8 shows transverse slices through the vec-
torial OTF for s ¼ 0, with sine apodisation. Cx

shows changing asymmetry across the m and n
axes. At lower frequencies, the OTF along the m
axis is stronger than along the n axis, while at high
frequencies the situation is reversed. Cy has a
dramatic fourfold symmetry and large negative

Fig. 8. Transverse slices through the vectorial OTF for s ¼ 0, with a ¼ 2p=5 and sine apodisation. The vector components and total

amplitude are shown as Cx, Cy , Cz, and C. Each plot is independently scaled, due to the large differences in amplitude for the different

components. Note that in this paper we have assumed input linear polarisation along the x axis, corresponding to the m axis in

frequency space. Cx shows an interesting asymmetry, with a low x frequency boost (central horizontal elongation), yet a high y fre-

quency (vertical elongation) boost. The total amplitude C includes negative regions (indicated with a dashed contour line) at high

values of m, inherited from Cz.
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regions, but this component of the OTF is or-
thogonal with the input polarisation and has rel-
atively little strength. However, Cz has substantial
energy including negative regions with about 30%
of the peak strength of Cx. This results in a total
OTF C with large negative regions which indicates
a contrast reversal for high frequencies parallel to
the x axis in the PSF. While the general charac-
teristics are similar to Figs. 7–10 of Sheppard and
Larkin [6], we emphasise that Fig. 8 is of slices
through the OTF rather than the projections
shown in Sheppard and Larkin.

Fig. 9 shows axial slices through the vectorial
OTF for n ¼ 0, with sine apodisation. For this case
the most dramatic features away from the s ¼ 0
plane are to be seen in the Cy component. How-
ever, again, this component contributes relatively
little to the total OTF.

To enable more direct comparison with
Sheppard and Larkin [6] we have plotted in Fig. 10
the total amplitude C0 ¼ C0

x þ C0
y of the projection

through s of the OTF

C0ðm; nÞ ¼
Z

Cðm; n; sÞds ð37Þ

with sine apodisation. By the projection–slice
theorem [13], this corresponds to the spatial fre-
quencies in a transverse slice along the focal plane
of the PSF. With a negative region of about 10%

of the value of the low frequency response, sig-
nificant contrast reversal can be expected for high
m transverse frequencies, while the n frequencies
are stronger overall than the m frequencies as has
been noted before [3,11] in direct studies of the
vectorial PSF.

Fig. 9. Axial slices through the vectorial OTF for n ¼ 0, with a ¼ 2p=5 and sine apodisation. The vector components and total

amplitude are shown. As for the transverse slices, the Cy component in particular shows interesting structure. However Cy is very weak

compared with the other components, so this will not have a very large effect overall.

Fig. 10. The amplitude C0 of the projection through s of the

vectorial OTF for a ¼ 2p=5 and sine apodisation. This is

equivalent to figure 10 of Sheppard and Larkin [6] except for

the change to sine apodisation. The dashed contour lines at the

extreme left and right of the figure enclose the negative regions

of C0.
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Calculating the projected OTF in this manner is
very time-consuming, taking about 12 h on our
Linux Athlon system. The 2D FFT approach de-
scribed by Sheppard and Larkin [6] is thus much
more efficient for calculation of projections.

5. Discussion

The vectorial OTF is a relatively new concept in
optical imaging theory, and raises substantial
questions of interpretation and meaning. Clearly
there are significant asymmetries introduced at
high NA for polarised light. However, their ap-
plication to modelling an entire imaging system is
less straightforward than for standard 2D transfer
functions as used in Fourier optics.

The vectorial OTF presented here is simply a
representation of the frequency content of the in-
tensity pattern in the focal region of a single lens
illuminated by a linearly polarised plane wave. It
could be argued, therefore, that the term vectorial
OTF is not appropriate, and that it should be
called instead the vectorial intensity spatial fre-
quency spectrum. However, we have chosen to use
the shorthand notation of vectorial OTF, as the
OTF is well known to represent the spatial fre-
quency content of the intensity PSF in scalar 2D
optics.

The performance of a system will depend on the
imaging behaviour of at least one lens, and the
vectorial response of the specimen. For example,
to apply this theory to fluorescence microscopy,
we need to use a model of the dipole orientation,
rotation and response of the excited molecules for
varying incident polarisation and spatial frequency
[14]. By incorporating this dipole response model,
the vectorial OTF might form an important tool in
modelling the frequency response of entire imaging
systems. If the dipole can freely rotate, then the
image in a confocal fluorescence microscope is the
same as for an isotropic point object [15] and we
can use the appropriate vectorial OTF directly.

For modelling incoherent transmission micros-
copy of weakly scattering objects, we can assume a
linear system. Again, knowledge of the response of
the object to different polarisations and spatial
frequencies of light is required for producing a

vectorial OTF representing the system as a whole.
In this way, the 3D vectorial OTF might be useful
for analysing polarisation microscopy.

For strongly scattering objects or changes in
specimen refractive index, a more complicated
approach is needed [16].

Our use of the Debye approximation assumes a
high Fresnel number. However, unless the Fresnel
number is infinite, regions of the PSF very far from
focus will have smaller Fresnel numbers. Since each
point in the OTF naturally encompasses Fourier
components from throughout the theoretically in-
finite extent of the PSF, the Debye approximation
places a limit on the accuracy of the OTF. While in
general the contributions of regions away from
focus will be small due to the concentration of
power at focus, this approximation will be a con-
cern for very strong aberrations which distribute
significant energy away from the focal point.

Typically aberrations in paraxial systems are
modeled using Zernike polynomials describing the
phase variation across a circular pupil [17], and this
is a useful tool in Fourier optics. Some aberrations,
such as defocus or spherical aberration can be de-
scribed using the radial pupil co-ordinate alone,
but, in general, aberrations depend on both the
radial and polar co-ordinate. Although Zernike
polynomials are not orthogonal for high aperture
systems, due to their assumption of a flat 2D pupil,
clearly any general description of aberrations will
allow for radial asymmetry. This provides a further
justification for OTF calculation methods which
make no assumptions of symmetry.

A high NA equivalent of the Zernike functions
is needed, defined on the cap of a sphere rather
than across a circle, to describe focusing aberra-
tions [18]. In addition, the relationship between the
causes of aberrations, such as a refractive index
change in the specimen, needs to be carefully
mapped from rigorous PSF models onto the pupil
function [19,20].

Modelling amplitude and phase masks placed in
the back focal plane of the lens is somewhat sim-
pler – they can be applied directly to the model
presented here using the complex transmission
filter T ðm; nÞ.

In conclusion, we have presented an autocorre-
lation based method for evaluating the high NA
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vectorialOTFusing a simple line integral. Arbitrary
pupil functions may be used without the need for
cylindrical symmetry. We have plotted slices and a
projection through the vectorial OTF for unaber-
rated focusing with sine and Herschel apodisation.
Although in principle the same information is con-
tained in the PSF, the OTF makes it easier to see
frequency-based focusing characteristics.

For OTF projections, FFT-based methods are
more efficient as long as care is taken with accu-
racy and sampling effects. In addition, such pro-
jections of the OTF only carry information about
a single plane of the PSF, and care must be used
when including them as part of a system model.

In general, our autocorrelation method for
calculating the vectorial OTF has the advantage of
being straightforward to evaluate for arbitrary
pupil functions and arbitrary points in the OTF.
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