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Abstract

We calculate the 3D vectorial optical transfer function directly from the vectorial pupil
function, without making the paraxial assumption nor assuming radially symmetric pupils.
Our model uses a single autocorrelation integral with Cartesian pupil co-ordinates to cal-
culate the transfer function. Results for Herschel and aplanatic systems are presented. We
discuss the meaning and application of a vectorial transfer function as a tool for analysing
high aperture incoherent microscopy modes including fluorescence and transmission.
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1 Introduction

The transfer function is an important tool in optical design, where it is used to
evaluate the performance of a given optical system. The optical transfer function
(OTF) for a linear, space-invariant system is given by the Fourier transform of the
intensity point spread function (PSF). Even if the system is not linear or space-
invariant, the Fourier transform of the intensity PSF is a useful measure of the
system performance, and is often termed the OTF. The 3D OTF describes the action
of a lens in terms of spatial frequencies in the 3D PSF produced at the focus. By
determining the system OTF, together with a model for the response of the object
to incident light, we can build up a model for the system as a whole.
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Maximising the performance of high resolution microscopy requires increasingly
accurate models for the high numerical aperture lenses used, for the effects of their
apodisation functions, and for any aberrations introduced by the the specimen. Vec-
torial theory for the accurate calculation of the high aperture PSF has been available
for a long time [1,2,3]. Yet despite the popularity of Fourier optics for modelling
low aperture systems, the field of high aperture vectorial transfer functions remains
relatively unexplored.

Frieden [4] first derived the scalar 3D OTF as an autocorrelation using the parax-
ial approximation. This autocorrelation provides a method for calculating the OTF
directly from the pupil function. This is much simpler than first obtaining the PSF
and then performing a Fourier transform — especially in 3D. Frieden’s work was
extended by Sheppard et al [5] to cover the scalar high numerical aperture (“high
NA”) case by explicitly avoiding the paraxial assumption. This work derived ana-
lytical expressions, assuming cylindrical symmetry in the pupil function. However,
modelling arbitrary aberrations and pupil functions, and indeed using a vectorial
approach taking account of the asymmetry of incident polarised light, requires a
more general non-cylindrical model.

An alternative approach is to calculate the autocorrelation as a multiplication in
Fourier space, allowing the use of the fast Fourier transfer (FFT) algorithm. This
method was applied to vectorial pupil functions by Sheppard & Larkin [6], resulting
in a vectorial OTF. This is a useful method, especially for 2D projections. However
calculation using 3D FFTs would be awkward, delicate and time consuming due
to the need for careful consideration of sampling issues, accuracy and the large 3D
arrays required.

A vectorial OTF was also presented by Urbańczyk [7], but the analysis was re-
stricted to a 2D OTF for low angle systems. The earliest mention of an incoherent
scalar OTF with an axial dimension was by Mertz [8, pp. 101–102].

Our approach in this paper is to expand the development of two papers by Sheppard
et al [5,6], generalising where necessary to full 3D Cartesian co-ordinates, in order
to avoid the assumption of radial symmetry. We present general descriptions of the
vectorial lens pupil functions. This pupil function description is then used in an
autocorrelation to form the vectorial optical transfer function (OTF), which may be
geometrically interpreted as the volume of overlap between two spherical shells.

We derive general formulas for the volume of overlap, which do not assume radial
symmetry, resulting in a single integral. This equation is straightforward, if time
consuming, to calculate, and serves as a useful alternative to the Fourier transform
method [6]. We then plot the vectorial OTF for various cases. Finally we discuss
the implications and potential uses of a vectorial OTF.
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2 Vectorial pupil function

The theory of Richards and Wolf [3] describes how to determine the electric field
near to the focus of a lens which is illuminated by a plane polarised quasi-monochromatic
light wave. Their analysis assumes very large values of the Fresnel number, equiv-
alent to the Debye approximation. We can then write the equation for the vectorial
amplitude PSF ~E(~x) of a high NA lens illuminated with a plane polarised wave as
the Fourier transform of the complex vectorial pupil function ~Q(~m) [9],

~E(~x) = − ik
2π

�����
~Q(~m)exp(ik~m ·~x)d~m . (1)

Here k = 2π/λ is the wave number, λ is the wavelength, ~m = (m,n,s) is the Carte-
sian pupil co-ordinate, and~x = (x,y,z) is the focal co-ordinate. The vectorial pupil
function describes the effect of a lens on the polarisation of the incident field, the
complex value of any amplitude or phase filters across the aperture, and any addi-
tional aberration in the lens focusing behaviour from that which produces a perfect
spherical wavefront converging on the focal point.

Because we are describing the behaviour of electromagnetic waves, they must
obey the Maxwell equations, giving an important constraint — the homogeneous
Helmholtz equation for time-independent vectorial wave fields,

∇2~E(~x)+ k2~E(~x) = 0 , (2)

assuming a constant refractive index in the focal region.

By expressing the Helmholtz equation in Fourier space, we can determine the elec-
tromagnetic constraints on the pupil function ~Q(~m). Applying the Fourier relation-
ship ∇2~E(~x) ⇔−|~m|2~Q(~m), we have

(|~m|2 − k2)~Q(~m) = 0 , (3)

which means that the pupil function is only non-zero on the surface of a sphere
with radius k,

~Q(~m) = ~P(~m)δ(|~m|− k2) . (4)

This is known as the Ewald sphere in the theory of X-ray diffraction.

For a practical quasi-monochromatic wave, k cannot have purely a single value, so
the spread of wavelengths in the illumination light gives a small finite thickness to
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the spherical shell. For this paper we examine the monochromatic case and assume
a thin shell of thickness δk and take the limit δk → 0.

Because the pupil function only exists on the surface of a sphere, we can slice it
along the s = 0 plane into a pair of functions

~Q(~m) = ~Q(~m)
k
s

δ(s−
√

k2 − l2)+ ~Q(~m)
k
s

δ(s+
√

k2 − l2) , (5)

representing forward and backward propagation. Here we have introduced a ra-
dial co-ordinate l =

√
m2 +n2. The k/s factor accounts for the change in projected

thickness of the spherical shell for declination angles away from the s axis, a side-
effect of rewriting the delta function in terms of s rather than the radius |~m|.

Now we examine the axial projections ~P±(m,n) of the pupil function,

~P+(m,n)=

∞�

0

~Q(~m)ds (6)

~P−(m,n)=

0�

−∞

~Q(~m)ds , (7)

which represent forward and backward propagation respectively. Together these 2D
functions give a complete description of the 3D pupil function ~Q(~m). Restricting
our attention to the forward propagation case, we can write

~P+(m,n)=

∞�

0

~Q(~m)
k
s

δ(s−
√

k2 − l2)ds (8)

= ~Q(m,n,s+)
1

s+
, (9)

where we have normalised the radius to k = 1 and indicated the constraint on s to
the surface of the sphere with s+ =

√
1− l2.

The aperture of the lens is represented by slicing a cap off the top of the sphere. The
angle α subtended by the cap at the centre of the sphere is related to the numerical
aperture NA and the refractive index n of the imaging medium (such as air, water
or immersion oil) by

sinα =
NA
n

, (10)

as shown in Fig. 1.
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Figure 1. A cross-section through the pupil sphere in the (m,s) plane.

0.52

1.0

-0.24

0.24

-0.85

0.85

m

n

s

m

n

s

m

n

s

ay azax

Figure 2. The vectorial strength factors ~a(m,n) for linearly polarised light propagating in
the forward direction, mapped onto the spherical pupil caps, with α = π/3.

For incident light which is plane-polarised along the x axis, we can derive a vecto-
rial strength function ~a(m,n), from the strength factors used in the vectorial point
spread function integrals [3,10,6]

~a(m,n) =











(m2s+ +n2)/l2

−mn(1− s+)/l2

−m











(11)

where we have converted from the spherical polar representation in Richards and
Wolf to Cartesian co-ordinates. We show an example case for ~a(m,n) in figure 2.

We can now model polarisation, apodisation and aperture filtering as amplitude and
phase functions over the projected pupil,

~P+(m,n) =
1

s+
~a(m,n)S(m,n)T(m,n) (12)
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representing forward propagation only (α ≤ π/2), where S(m,n) is the apodisation
function, and T (m,n) is any complex transmission filter applied across the aperture
of the lens. This transmission factor can also be used to model focusing aberrations.

For uniform focusing, the Herschel condition, the apodisation function is simply

Sh(m,n) = 1 . (13)

Microscope objectives are usually designed to obey the sine condition, giving apla-
natic imaging [11], for which we write the apodisation as

Ss(m,n)= cos
1
2 θ (14)

=
√

s+ . (15)

3 Three dimensional vectorial optical transfer function

For incoherent imaging, we are interested in using the OTF to describe the fre-
quency components of the intensity ~E · ~E∗ of the PSF. From (1) and the Fourier
autocorrelation theorem [12],

| f (~x)|2 ⇐⇒
�����

F(~m+
~m′

2
)F∗(~m− ~m′

2
)d~m (16)

(where ~F(~m) is the Fourier transform of ~f (~x)), we can obtain the OTF ~C(~K) by
taking the autocorrelation of the pupil function ~Q,

C(~K) =
�����

~Q(~m+ 1
2
~K) · ~Q∗(~m− 1

2
~K)d~m . (17)

The spatial frequency ~K = (m,n,s) may be represented geometrically as the shift of
one copy of the pupil sphere cap relative to the other. The total value of the integral
for a given spatial frequency ~K is given by the total volume of intersection of the
shifted spherical shells, multiplied at each intersection point by the values of the
pupil functions at that location.

The spheres intersect in a circle perpendicular to the direction of the shift between
them, which we call the circle of intersection, as shown schematically in figure 3.
When the spheres are shifted so far that they no longer intersect, the value of the
OTF for that shift must be zero, giving the absolute spatial frequency cutoff.

At any given point along the circle of intersection, the intersection between the
spherical shells has a rhombic cross-section (Fig. 4). Therefore for any pupil shift
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Figure 3. 3D views of the shifted spherical pupil caps for K = (0.8,0.2,0.2) and α = π/2.
The intersection can be seen as the arc of a circle.

Figure 4. The rhombic area of overlap between two spherical pupil caps.

~K we need to find a general equation for the circle of intersection, so that we can
find the value of the shifted pupil functions along the circle, and also an equation
for the area of the rhombic cross-section.

For convenience we denote the total length of the pupil shift as K

K = |~K| =
√

m2 +n2 + s2 . (18)

Cross-sections of the geometry for the intersecting spheres are shown in figures 5
and 6. The shifted pupil spheres can be described using vectors as

|~m± ~K/2| = 1 (19)

allowing us to solve for the radius of the circle of intersection of the two spheres

r0 = |~r0| =
√

1− K2

4
. (20)

If we can fully specify the circle of intersection using a vector equation for one
case, we can use vector scaling and rotation to produce the circle of intersection for
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Figure 5. A cross-section through the intersecting spheres for a given offset between them
of ~K. For the purposes of this figure, we assume n = 0. The radius r0 of the arc of intersec-
tion is shown here as OM. Q1 is the projection of P1 from figure 6, the endpoint of the arc
of intersection where β = β1.

any given ~K. Setting ~K0 = (K,0,0), the circle of intersection for this case is

~r0(~K0,β) =











0

r0 sinβ

−r0 cosβ











(21)

where β is introduced as a parameter to isolate a point on the circle by its angle
with the s axis.

We now generalise for arbitrary ~K. Changes in the length of ~K are accommodated
already by equation (21). Rotation of ~K whilst keeping β = 0 at the lowest s co-
ordinate on the circle can be described using a pair of counter-clockwise Euler
rotations,
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Figure 6. The circle of intersection, in the plane along the line MO that is perpendicular to
the (m,s) plane of figure 5 (again assuming n = 0 for the purposes of the figure). The arc of
intersection is shown as P1MP2, which varies with spatial frequency ~K and aperture angle
α. For a constant pupil, the length of this arc, 2β1(~K,α), is proportional to the strength of
the transfer function for a given spatial frequency ~K.

~Rn(θ)=











cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ











(22)

~Rs(φ)=











cosφ sinφ 0

−sinφ cosφ 0

0 0 1











(23)

first about the n axis, then around the s axis, giving a general form for the circle of
intersection,

~r0(~K,β)=~Rs[−arctan(n/m)]~Rn[π/2− arccos(s/K)]~r0(~K0,β) (24)

=











r0
1

lK [mscosβ−nK sinβ]

r0
1

lK [nscosβ+mK sinβ]

−r0
l
K cosβ











(25)

where arctan(n/m) takes account of which quadrant (m,n) is in.

Finally, we need to incorporate the rhombic shape of each intersection area along
the circle of intersection (Fig. 4). By geometry, this shape will be constant around
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any given circle, but will vary according to the shift ~K between the pupils. The area
A of the rhombus is given by

A(~K) =
(δk)2

Kr0
, (26)

for K > 0, giving a line integral. For K = 0 the integral becomes a surface integral
proportional to δk. For infinitely thin shells, the line and surface integrals cannot be
numerically compared. Since we are obviously more interested in the range K > 0,
we focus on the line integral in this paper, for which C(~0)→ ∞. This represents the
average value of the PSF intensity, which diverges due to the spatially unbounded
behaviour of the PSF in equation (1).

Having accounted for the changing cross-section, we can now recast the autocorre-
lation using the projected vectorial pupil function ~P+(~m) from equation (12), and
integrate along an arc of the circle of intersection, giving an unnormalised equation
for the autocorrelation

CUnNorm(~K) =
(δk)2

K

β1�

−β1

~P+

[

~r0(~K,β)+ 1
2
~K

]

·~P∗
+

[

~r0(~K,β)− 1
2
~K

]

dβ (27)

where β1 is the highest possible angle β on the circle of intersection for a given
aperture α, shown as MOP1 in figure 6, and defined below in equation (33). This
allows us to integrate along the complete arc of intersection between the spheres.

Two dimensional and one dimensional OTFs are usually normalised against the
zero frequency value. However, for the 3D case, equation (27) gives a singularity at
C(~0). Instead we choose to normalise against the total volume of the OTF. By the
Fourier definite integral theorem, this is equivalent to the central value of the inten-
sity PSF, which we easily determine [3]. We use uniform (Herschel) apodisation
for determining the normalisation. Setting |~E(~0)|2 = 1, the normalisation factor is

N(α) =
{

1
4(3+ cos2 α)sin4 α

2

}2
. (28)

We now arrive at a normalised form of the 3D vectorial OTF that is easy, albeit time
consuming, to calculate:

C(~K) =
1

KN(α)

β1�

−β1

~P+

[

~r0(~K,β)+ 1
2
~K

]

·~P∗
+

[

~r0(~K,β)− 1
2
~K

]

dβ . (29)
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Note that we have made no assumptions about the symmetry of the pupil function
~P nor any assumptions of low aperture, and therefore this equation is suitable for
calculating the 3D vectorial OTF with arbitrary pupil functions and apertures. How-
ever, there remains some symmetry in C(~K) by virtue of the fact that we defined it
as the Fourier transform of a real function, the intensity PSF. This constraint results
in Hermitian symmetry in the OTF,

C(~K) = C∗(−~K) . (30)

It is helpful to note that the angles θ1,2 at the centres of the spheres between the s
axis and the point of intersection, as shown in figure 5, are given by

cosθ1,2(~K,β) = −~r0(~K,β) ·~̂s∓ s
2

= r0
l
K cosβ∓ s

2 .
(31)

We now need to find the appropriate limits on the integration to ensure we only cal-
culate in physical zones, avoiding regions where the spherical caps do not intersect.
These conditions define the spatial frequency cutoff:

(1) If the spheres are shifted by more than twice their radius, then they will never
intersect. Therefore:

K ≤ 2 . (32)

(2) The aperture will set a limit |β| ≤ β1 on the length of the arc of the circle of
intersection. This limit can be found by geometry, substituting θ1 = α into
equation (31) and solving for β

β1(~K,α) =



















arccos
{

K
lr0

(
|s|
2 + cosα)

}

K
lr0

∣

∣

∣

|s|
2 + cosα

∣

∣

∣
≤ 1

0 Re
{

K
lr0

(
|s|
2 + cosα)

}

> 1

π Re
{

K
lr0

(
|s|
2 + cosα)

}

< −1 .

(33)

The inequality conditions cover cases where the full spheres intersect, but the
aperture α truncates the caps before that point, or for regions where for large
apertures α > π/2 the arc of intersection completes a full circle.

(3) It is useful for certain calculations to know the spatial frequency cutoff in
terms of limits on ~K, which may be determined using [5]

2(l sinα−|s|cosα) = K2 . (34)
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Figure 7. A schematic of the 3D vectorial OTF for α = 2π/5 with Herschel apodisation.
The mesh surface indicates the spatial frequency cutoff, outside which the OTF is zero.
This surface has been sliced at n = 0, revealing the amplitude C(m,0,s) on that plane of the
3D OTF, after taking the sum of all vector components.

4 Results

We evaluated equation (29) for Herschel and sine apodisations at a very high aper-
ture (α = 2π/5⇒ NA = 0.95 in air) to explore the OTF behaviour under conditions
unsuitable for modelling with low NA techniques. Calculations were performed us-
ing standard Mathematica integration routines, on a Linux system with an AMD
Athlon 1.4 GHz processor. Large plots such as the one in figure 8 took about 4
hours, while figure 9 took 20 minutes. A major speed boost could be expected if
the integration was coded in C instead of using Mathematica.

Evaluating the vectorial OTF gives substantial numerical territory to explore. Each
3D point within the spatial frequency cutoff has a scalar value which may be split
up into 3 contributions from the vectorial components of the pupil,

C = Qx ?Q∗
x +Qy ?Q∗

y +Qz ?Q∗
z (35)

=Cx +Cy +Cz . (36)

The symbol ? denotes autocorrelation. A general overview of the shape of the OTF
is given in figure 7, showing the surface of the cutoff and the total value of the OTF
for a slice through the function.

Figure 8 shows transverse slices through the vectorial OTF for s = 0, with sine
apodisation. Cx shows changing asymmetry across the m and n axes. At lower fre-
quencies, the OTF along the m axis is stronger than along the n axis, while at
high frequencies the situation is reversed. Cy has a dramatic fourfold symmetry and
large negative regions, but this component of the OTF is orthogonal with the input
polarisation and has relatively little strength. However, Cz has substantial energy
including negative regions with about 30% of the peak strength of Cx. This results

12



-2 -1 0 1 2
-2

-1

0

1

2

-171 908

-2 -1 0 1 2
-2

-1

0

1

2

0 768

-2 -1 0 1 2
-2

-1

0

1

2

-18 28.2

-2 -1 0 1 2
-2

-1

0

1

2

-216 300

Cx Cy

Cz C

m

n

Figure 8. Transverse slices through the vectorial OTF for s = 0, with α = 2π/5 and sine
apodisation. The vector components and total amplitude are shown as Cx, Cy, Cz, and C.
Each plot is independently scaled, due to the large differences in amplitude for the different
components. Note that in this paper we have assumed input linear polarisation along the x
axis, corresponding to the m axis in frequency space. Cx shows an interesting asymmetry,
with a low x frequency boost (central horizontal elongation), yet a high y frequency (vertical
elongation) boost. The total amplitude C includes negative regions (indicated with a dashed
contour line) at high values of m, inherited from Cz.
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Figure 9. Axial slices through the vectorial OTF for n = 0, with α = 2π/5 and sine apodisa-
tion. The vector components and total amplitude are shown. As for the transverse slices, the
Cy component in particular shows interesting structure. However Cy is very weak compared
with the other components, so this will not have a very large effect overall.
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Figure 10. The amplitude C′ of the projection through s of the vectorial OTF for α = 2π/5
and sine apodisation. This is equivalent to figure 10 of Sheppard & Larkin [6] except for
the change to sine apodisation. The dashed contour lines at the extreme left and right of the
figure enclose the negative regions of C′.
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in a total OTF C with large negative regions which indicates a contrast reversal for
high frequencies parallel to the x axis in the PSF. While the general characteristics
are similar to figures 7–10 of Sheppard & Larkin [6], we emphasise that figure 8 is
of slices through the OTF rather than the projections shown in Sheppard & Larkin.

Figure 9 shows axial slices through the vectorial OTF for n = 0, with sine apodis-
ation. For this case the most dramatic features away from the s = 0 plane are to be
seen in the Cy component. However, again, this component contributes relatively
little to the total OTF.

To enable more direct comparison with Sheppard & Larkin [6] we have plotted in
figure 10 the total amplitude C′ = C′

x +C′
y of the projection through s of the OTF

C′(m,n) =
�

C(m,n,s)ds , (37)

with sine apodisation. By the projection-slice theorem [13], this corresponds to
the spatial frequencies in a transverse slice along the focal plane of the PSF. With a
negative region of about 10% of the value of the low frequency response, significant
contrast reversal can be expected for high m transverse frequencies, while the n
frequencies are stronger overall than the m frequencies as has been noted before
[11,3] in direct studies of the vectorial PSF.

Calculating the projected OTF in this manner is very time-consuming, taking about
12 hours on our Linux Athlon system. The 2D FFT approach described by Sheppard
and Larkin [6] is thus much more efficient for calculation of projections.

5 Discussion

The vectorial OTF is a relatively new concept in optical imaging theory, and raises
substantial questions of interpretation and meaning. Clearly there are significant
asymmetries introduced at high NA for polarised light. However, their application
to modelling an entire imaging system is less straightforward than for standard 2D
transfer functions as used in Fourier optics.

The vectorial OTF presented here is simply a representation of the frequency con-
tent of the intensity pattern in the focal region of a single lens illuminated by a
linearly polarised plane wave. It could be argued, therefore, that the term vectorial
OTF is not appropriate, and that it should be called instead the vectorial intensity
spatial frequency spectrum. However, we have chosen to use the shorthand nota-
tion of vectorial OTF, as the OTF is well-known to represent the spatial frequency
content of the intensity PSF in scalar 2D optics.
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The performance of a system will depend on the imaging behaviour of at least one
lens, and the vectorial response of the specimen. For example, to apply this theory
to fluorescence microscopy, we need to use a model of the dipole orientation, ro-
tation and response of the excited molecules for varying incident polarisation and
spatial frequency [14]. By incorporating this dipole response model, the vectorial
OTF might form an important tool in modelling the frequency response of entire
imaging systems. If the dipole can freely rotate, then the image in a confocal flu-
orescence microscope is the same as for an isotropic point object [15] and we can
use the appropriate vectorial OTF directly.

For modelling incoherent transmission microscopy of weakly scattering objects,
we can assume a linear system. Again, knowledge of the response of the object
to different polarisations and spatial frequencies of light is required for producing
a vectorial OTF representing the system as a whole. In this way, the 3D vectorial
OTF might be useful for analysing polarisation microscopy.

For strongly scattering objects or changes in specimen refractive index, a more
complicated approach is needed [16].

Our use of the Debye approximation assumes a high Fresnel number. However,
unless the Fresnel number is infinite, regions of the PSF very far from focus will
have smaller Fresnel numbers. Since each point in the OTF naturally encompasses
Fourier components from throughout the theoretically infinite extent of the PSF, the
Debye approximation places a limit on the accuracy of the OTF. While in general
the contributions of regions away from focus will be small due to the concentration
of power at focus, this approximation will be a concern for very strong aberrations
which distribute significant energy away from the focal point.

Typically aberrations in paraxial systems are modeled using Zernike polynomials
describing the phase variation across a circular pupil [17], and this is a useful tool
in Fourier optics. Some aberrations, such as defocus or spherical aberration can
be described using the radial pupil co-ordinate alone, but, in general, aberrations
depend on both the radial and polar co-ordinate. Although Zernike polynomials
are not orthogonal for high aperture systems, due to their assumption of a flat 2D
pupil, clearly any general description of aberrations will allow for radial asymme-
try. This provides a further justification for OTF calculation methods which make
no assumptions of symmetry.

A high NA equivalent of the Zernike functions is needed, defined on the cap of a
sphere rather than across a circle, to describe focusing aberrations [18]. In addition,
the causes of aberrations, such as a refractive index change in the specimen, need
to be carefully mapped from rigorous PSF models onto the pupil function [19,20].

Modelling amplitude and phase masks placed in the back focal plane of the lens
is somewhat simpler — they can be applied directly to the model presented here
using the complex transmission filter T (m,n).
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In conclusion, we have presented an autocorrelation based method for evaluating
the high NA vectorial OTF using a simple line integral. Arbitrary pupil functions
may be used without the need for cylindrical symmetry. We have plotted slices
and a projection through the vectorial OTF for unaberrated focusing with sine and
Herschel apodisation. Although in principle the same information is contained in
the PSF, the OTF makes it easier to see frequency-based focusing characteristics.

For OTF projections, FFT-based methods are more efficient as long as care is taken
with accuracy and sampling effects. In addition, such projections of the OTF only
carry information about a single plane of the PSF, and care must be used when
including them as part of a system model.

In general, our autocorrelation method for calculating the vectorial OTF has the
advantage of being straightforward to evaluate for arbitrary pupil functions and
arbitrary points in the OTF.
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