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Feature Extraction of Chromosomes From 3-D
Confocal Microscope Images
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Abstract—An investigation of local energy surface detection
integrated with neural network techniques for image segmentation
is presented, as applied in the feature extraction of chromosomes
from image datasets obtained using an experimental confocal
microscope. Use of the confocal microscope enables biologists to
observe dividing cells (living or preserved) within a three-dimen-
sional (3-D) volume, that can be visualised from multiple aspects,
allowing for increased structural insight. The Nomarski differ-
ential interference contrast mode used for imaging translucent
specimens, such as chromosomes, produces images not suitable
for volume rendering. Segmentation of the chromosomes from
this data is, thus, necessary.

A neural network based on competitive learning, known as Ko-
honen’s self-organizing feature map (SOFM) was used to perform
segmentation, using a collection of statistics or features defining
the image. Our past investigation showed that standard features
such as thelocalized meanandvarianceof pixel intensities provided
reasonable extraction of objects such as mitotic chromosomes, but
surface detail was only moderately resolved. In this current work,
a biologically inspired feature known aslocal energyis investigated
as an alternative image statistic based on phase congruency in the
image. This, along with different combinations of other image sta-
tistics, is applied in a SOFM, producing 3-D images exhibiting vast
improvement in the level of detail and clearly isolating the chromo-
somes from the background.

Index Terms—DIC, differential interference contrast, feature ex-
traction, feature space, image segmentation, local energy, Morlet
wavelet, phase congruency, self organizing feature map, SOFM.

I. INTRODUCTION

CONFOCAL microscopy is widely becoming a popular
method for imaging specimens across three-dimensional

(3-D) volumes, the results of which subsequently reflect
structural and surface detail not visible in standard two-dimen-
sional (2-D) projections [1]. The confocal configuration (i.e.,
point-like illumination and a detector with a pinhole mask),
demonstrates increased ability foroptical sectioning(improved
depth resolution) over conventional methods (i.e., using a
large-area-detector). As such, it is ideal for obtaining highly
resolved image slices across the specimen volume, which can
then be recombined to form a 3-D image representation.
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Confocal transmission Nomarski differential interference
contrast (DIC) is a mode that images changes in the refractive
index of the specimen and is, thus, suited to the imaging of
translucent subjects, such as chromosomes [2]. Standard 3-D
image processing and visualization techniques such as those
employed in other 3-D modalities (e.g., confocal fluorescence)
are ineffective when applied to DIC due to their inability to
deal with the inherent differential shading embedded in the
imaged specimens. The problem is that each DIC image slice
shows a differentialbas-reliefeffect, depicting highlights for
positive phase gradients in the specimen, shadows for negative
gradients, and grey for regions of zero phase gradient (or a
level surface). As a result, it becomes difficult to distinguish
the level surfaces on the chromosomes from the background,
prompting the need for removal of the differential effect before
the original image may be reconstructed.

In the past, various techniques have been proposed to reverse
the differential effect, so that image specimens may be isolated
from their background. Isolation would then allow for clear
3-D volume visualization of the data specimens, by rendering
the background transparent. Quantitative approaches outlined
in the literature use integration and iterative deconvolution [3],
[4] to reconstruct the DIC image. However both methods have
a smoothing effect, reducing the clarity of 3-D visualization.
Other, more advanced techniques, such as Weiner filtered de-
convolution [5], attempt to model the DIC imaging system to
accurately restore phase, however, in doing so make simplifying
assumptions about the DIC process that are inconsistent when
applied to complex biological specimens. The Hilbert Trans-
form has been shown to be a useful qualitative alternative [6]
in its ability to reconstruct phase information from DIC images.
The transform allows features of interest (those exhibiting high
spatial frequencies) as well as contrast between specimen ob-
jects and background information to be retained.

The majority of effort addressing DIC images, is centerd on
direct reconstruction, however, little work has been conducted in
terms of further image processing to resolve important features
within the data. Furtherimage segmentation(the process of sub-
dividing or categorising an image into its different constituent
parts) for example, can resolve greater surface detailwithin the
objects themselves than can be obtained through a simple back-
ground removal. The motivation of this paper is, thus, based on
formulating improved techniques that extend the Hilbert pro-
cessing of DIC images to allow for better extraction of chromo-
somefeaturesduring visualization. The aim is twofold: to rep-
resent the dataset through advanced, meaningful features; and to
classify and segment into regions exhibiting similar features, al-
lowing for more distinct isolation of chromosome regions from
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Fig. 1. Image reconstruction (images courtesy of Arnisonet al. [6]). (a) One of the original 2-D transmission DIC images of orchid chromosomes showing
bas-relief(differential shading gradient). (b) Directional integration of the DIC image showing blurred result and streaking across the lateral axis. (c) Hilbert
transform of the DIC image shown in (a). The differential shading is removed, providing an initial stage in image reconstruction.

background. Thereby simplifying the visualization process with
the view for future automation.

Kohonen’s self organizing feature map (SOFM) is an estab-
lished neural network algorithm that works to cluster an input
set of statistics using unsupervised learning. It has been used
across multiple disciplines for classifying and segmenting data
of which there is no prior knowledge. It is especially useful in
image processing as it allows for a high dimensional feature
space to be adaptively mapped onto a lower dimensional, neural
manifold. Achieving what is essentially, an optimal vector quan-
tization of the input feature space [7].

The concept of feature space simply refers to the vectorial
representation of a group of image statistics defining each pixel
in the original image. In past work conducted by Nguyenet al.
[8], pixels were redefined using 3-D vectors incorporating clas-
sical image statistics, namely: pixel intensity, localized mean
and localized variance. This new, feature space description of
the image offers a more detailed description of each voxel, re-
flecting a voxeltopologyrather than a simple intensity level.
Such a description, when applied to the SOFM, has met with
favorable segmentation results in that the chromosome bodies
were adequately distinguished and, thus, extracted from their
surroundings for volume visualization. The problem however,
was that there was very little resolution of the internal struc-
ture of these chromosomes, and the results presented no signif-
icant improvements over thresholding, except that a segmented
dataset would aid in automatic rejection of background.

In this paper, a biologically inspired feature known aslocal
energyis investigated as an alternative image statistic. Predom-
inantly local energy has been investigated for its ability as a
2-D feature detector [9], based on phase congruency (PC) in

the image. More recently, preliminary 3-D applications in con-
focal microscopy focus on surface detection [10], wherein a
ridge tracing algorithm is used to form an opaque, skeleton
image of the specimen. In our investigation, we propose a novel
scheme that exploits the propensity of the SOFM for unsuper-
vised categorization, with the heightened feature sensitivity of
3-D local energy detection: incorporating these techniques in
order to more completely describe the internal and external fea-
tures existing in the chromosome specimens. As such, we extend
beyond describing just the outer skeletal shell of a specimen.

Due to the qualitative nature of the original data (a nonlinear
mixture of DIC phase and amplitude information) [6], visual in-
spection remains the only form of evaluation. This is conducted
via volume visualizationof the resultant datasets. For this pur-
pose, we use the software packageVoxelView,1 in which the
background can be made transparent, while the 3-D segmented
features are rendered to various degrees of opacity in order to
reveal the remaining chromosome structures.

The following presentation is structured as follows: Sec-
tion II will outline the initial reconstruction techniques,
Section III will discuss the SOFM algorithm, Section IV will
introduce the concept PC while also describing the local energy
detection process. Finally, results are presented in Section V
with conclusions drawn in Section VI.

II. I MAGE RECONSTRUCTION

The first stage in processing the DIC image data is to remove
the differentialbas-reliefeffect present in the image [Fig. 1(a)].
The technique used is based on spatial frequency analysis, and is

1VoxelView: Vital Images, Inc. USA
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Fig. 2. Kohonen’s SOFM algorithm.

known as the Hilbert transform (developed by Oppenheim and
Schafer) [6], [11].

In the real space domain, differentiation corresponds to a
multiplication by the spatial frequency, while integration corre-
sponds to division. Straight integration alone induces a division
process that attenuates higher frequency components, often re-
sulting in a blurred result [Fig. 1(b)]. The Hilbert transform dif-
fers in its ability to maintain the relative balance of frequency
components in the image. It achieves this by keeping all posi-
tive frequency components and reversing the negative frequency
components [Fig. 1(c)]. This makes the image symmetric, re-
moving thebas-reliefeffect.

III. I MAGE SEGMENTATION USING SOFM

A. SOFM Architecture

Kohonen’s self-organizing map algorithm can be visualised
in terms of the structure shown in Fig. 2. The map consists of a
2-D lattice of neurons (memory elements). Input feature vec-
tors are applied to the input node of the SOFM individually,
each imparting information to the neural map about a partic-
ular characteristic in the image. Each neuron in the map has a
feature vector of its own, initially randomly oriented in feature
space. Over time, these neurons learn from the input vectors, ac-
cording to a competitive learning algorithm, selectivelytuning
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(a) (b)

Fig. 3. Control parameters describing proportion of information learnt from each new input vector. (a) Graph describing the learning rate over time.When�(t)
falls below the threshold� , learning ceases. (b) Gaussian neighborhood smoothing function. The peak of which corresponds to a value of one, decaying radially
to zero.

themselves to a particular orientation in feature space. The final
orientations of the neurons then represent particular feature cat-
egories into which the individual image pixels (denoted by the
input feature vectors) can be grouped.

The real power of the SOFM, therefore, lies in its ability to
form atopographicalmap of the input patterns where the spatial
locations (coordinates) of the neurons in the lattice represent
intrinsic features contained in the set of input vectors [12]. This
architecture, thus, aids in the categorization of pixels reflecting
an overall segmentation of the original image.

B. Training Vectors—The Learning Process

When each input vector is applied to the network, a single
neuron known as thewinningneuron is activated. This neuron is
the one with a feature vector closest to the input vector. Thewin-
ningneuron is found by calculating the minimum euclidean dis-
tance of all the neurons from the input vector as follows, where

is the feature vector of neuron, is the current input
vector, and is the winning neuron

(1)

The winning neuron and its neighboring neurons, each
learn information by updating their orientations toward the
input vector by some proportion. The proportion is highest for
the winning neuron, reducing somewhat for the surrounding
neurons, depending on how close they are to the winning
neuron. Closer neurons are updated more dramatically, thus,
learn more information from the input. The learning process is
iterative, converging over time

(2)

where is the learning rate and is a 2-D neighbor-
hood smoothing function.

Together, and control the proportion by which a
neuron is updated.

C. Control Parameters

Learning Rate : The learning rate is defined as

(3)

where is the starting rate and is the decay rate.
This function decays over time, depending on adjustable time

constants, and controls theglobalproportion of information that
is to be learnt at each iteration in the SOFM algorithm. When
it falls below a defined tolerance , this signifies the algo-
rithm’s convergence, and learning ceases.

Neighborhood Smoothing Function : The neigh-
borhood smoothing function controls the relative proportion
of change occurring in the winning and neighboring neuron
feature vectors. It is modeled on a 2-D Gaussian normalized
between zero and one [Fig. 3(b)], centerd on the position of the
winning neuron in the map lattice. The smoothing function is
described by

(4)

where and are the position vectors of the winning neuron
and the neuron being updated, while represents a ra-

dius function controlling the extent over which the neighbor-
hood function is effective.

Thus, 1 at the winning neuron, and its feature vector
is updated by the full proportion of , while surrounding
neuron vectors are updated by a fraction of .

The set of neurons to be updated at an instant in time, is con-
trolled by the radius function as mentioned previously. This ra-
dius also decays exponentially

(5)

where is the initial value and is an arbitrary fixed time
constant.

D. Clustering and Reassigning Pixel Intensities

After the neuron feature vectors have beentunedto particular
orientations in feature space (i.e., representing particular surface
types in the original image), the original pixels are thenpooled
into categories, each of which is assigned a new intensity value
(intensity values divided equally across the greyscale range).
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Fig. 4. A Voronoi tessellation showing the formation of category boundaries about the neurons, and the pixels clustered into these categories.

Each category is defined by a neuron. Pixels are assigned to
the neurons they are closest to in feature space. This process
formsclustersof pixels, using an algorithm known as aVoronoi
tessellation. A Voronoi tessellation defines the region in feature
space surrounding each neuron vector such that the boundary di-
viding two clusters is perpendicular to the line joining the center
of two clusters (see Fig. 4).

The pixel values are then reassigned according to their cate-
gorised intensity, thus producing an image segmented by inten-
sity into its primary surface types. Intensities representing un-
wanted surface types can then be removed during visualization.

E. SOFM Algorithm

The SOFM segmentation process was applied to the 3-D
datasets in a number of separate stages. These steps are as
outlined here.

Step 1) Build 3-D dataset: The individual image slice files
(in ’FITS’ file format) are combined into a single
3-D dataset in memory. This dataset forms the input
to steps 2 and 4.

Step 2) Generate features: The appropriate set of three statis-
tical features are generated for each voxel in the 3-D
dataset. A three-tuple featurevector for each voxel
is then constructed from the generated features. The
output is a file of voxels represented in feature space.

Step 3) SOFM: The feature space vectors describing the
image, produced in Step 2, are then used as input
to the SOFM algorithm, which builds and trains
a neural map of chosen dimension . The
output of this step is a map file of neural vectors.

Step 4) Clustering: The clustering step takes input from
steps 1 and 3, where the voronoi algorithm is used
to tag each voxel in the original 3-D dataset, with a
label classifying it into one of the groupings defined
by the characteristic neural vectors in the map file.

Step 5) Assign intensities and reslice dataset: In the final
step, the labeled voxels are assigned an intensity
value to enable viewing, before being split into sepa-
rate image slices for saving. The separation of inten-
sity labeling from the clustering process allows for
different assignment techniques to be explored in fu-
ture experiments.

IV. L OCAL ENERGY DETECTION

A. Perceiving Features in an Image

The problem of extracting features from within 3-D images
produced using a confocal microscope is very similar to the no-
tion of edge detection within 2-D images. Many techniques used
today are simply 3-D extensions of 2-D gradient-based edge de-
tectors.

Gradient-based methods work on the principle that people
perceive features wherever there is a sharp difference in inten-
sity between two regions (i.e., an intensity gradient). However,
these methods only locate features with a step-like intensity pro-
file and do not account for the variety of other possible feature
profiles such as lines, roofs or ramps—feature profiles which
all exist in confocal microscope images. For this reason, simple
gradient-based methods fail to adequately locate much of the
surface detail present in an image.

Rather than searching for points where there are sharp
changes in intensity, the local energy or PC model of detection
searches for patterns oforder in the phase component of the
FT of the image. Physiological evidence [13] indicates that the
human visual system responds strongly to points in an image
where phase information is highly ordered, redefining how
featuresare actually perceived.

B. Phase Congruency

The local energy model of feature detection [14] is based on
the principle that features are perceived at points of maximal PC
within an image. The first step in understanding PC is to con-
sider the Fourier expansion of a one dimensional (1-D) intensity
profile into its component sinusoidal waveforms

(6)

where
constant (usually );
phase offset of theth component;
magnitude of the the sine component.

Generally, the Fourier components will be in phase in regions
where features are visible. For example, the Fourier components
of a square wave (step-like intensity profile) are in phase at the
step, independent of whether the step represents a positive or
negative transition in intensity [see Fig. 5(a)]. Alternatively, the
Fourier components of a bar feature, or triangular wave pro-
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(a) (b)

Fig. 5. Fourier components of (a) a step intensity and (b) a bar intensity function. The in-phase components correspond to regions in which features are detected.

Fig. 6. Phasor representation of the Fourier components at a single pointx in the signalF (x).

file, are in phase at each peak and trough [see Fig. 5(b)], cor-
responding to points that are responsible for perceived features.

The PC function is defined by Morrone and Owens [14] as

(7)

where parameters are as in (6).
The signal , at any point in the image, can be thought

of in terms of a sum of vectors (rotating phasors at different an-
gular frequencies in the complex domain which represent indi-
vidual Fourier sine components, each with a different amplitude

and phase ). This is depicted in the Fig. 6.
A relatively simple method for obtaining a measure of PC

would be to find the mean phase angle of the vectors, and cal-
culate the standard deviation of all the individual phase angles
about this mean. This method breaks down, however, since it

gives a large deviation when comparing vectors at 355with
those located at 1, where it should be small.

The cosine term was subsequently added to the PC equation
in order to capture the proximity of these two angles. Thus, the
PC is equal to one when the Fourier component vectors are all
aligned (such as at the discontinuity in a step-function), and falls
between zero and one otherwise.

The PC function can be approximated using the Taylor ex-
pansion

(8)

so that

(9)
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(a) (b)

Fig. 7. (a) Real and (b) imaginary Morlet wavelet functions forming a complex Gabor function.

This approximation is maximized, as mentioned previously,
for a value of theta equal to the mean phase angle, thus

(10)

C. Local Energy

Phase congruency as defined in the Section IV-B is an
awkward value to calculate. It was subsequently shown by
Venkatesh and Owens [15], that the PC function is directly
proportional to a function known as the local energy, which is
a popular computation used in modeling biological vision.

The local energy function is defined for a 1-D signal as:

(11)

where is the integral over the real parts of the phasors
defining the signal at (luminance profile); while is the
integral over the imaginary parts of these phasors [Hilbert trans-
form of ].

This energy , defined at the point in the signal, is the
magnitude of the vector sum of all the Fourier components of
the signal at that point (i.e., the vector sum of all the phasors as
depicted in Fig. 6). then becomes the sum (integral) of all
the real parts of these phasors (luminance profile), while
is the sum of all the imaginary parts of these phasors.

The local energy function shows peaks at points in the signal
where there is a high degree of alignment in the Fourier com-
ponent phasors: producing a larger resultant vector. The local
energy function is, thus, related to the PC function. The relation
can be described by

(12)

D. Morlet Wavelets

The preferred method for obtaining local frequency informa-
tion, used in calculating local energy, is known as the wavelet
transform [16]. This method uses a bank of filters to analyze
the signal. The filters are created from rescalings of one type of
wave shape, with each scaling designed to “pick out” particular
frequencies of the signal being analyzed [10]. This allows for a
morelocalizeddescription of frequency content than can be ob-
tained through the simple use of a FT. The range of frequencies
can also be easily controlled in this manner.

Morlet wavelets [16] are used to define the wave shape for
the filter banks. They are nonorthogonal wavelets based on com-
plex Gabor functions: cosine waves (even) and sine waves (odd),
each modulated by a Gaussian, forming the real and imaginary
parts respectively (see Fig. 7).

The two components and , of the local energy
are obtained by convolving the signal with a bank of Morlet
wavelets as follows:

(13)

(14)

where
set of frequencies over which the bank of filters
is defined2 ;
real and imaginary Morlet wavelet functions at
frequency ;
one-dimensional intensity profile at position;
one-dimensional convolution.

E. Extension to Higher Dimensions

The inherent problem in moving to higher dimensions is that
the Hilbert transform is only defined in one dimension. Further-
more, it is an odd function and, thus, exhibits animposed orien-
tation in higher dimensions.

This prompts a more general definition of the Morlet wavelet
functions

(15)

(16)

where , is the controlling factor between the filter’s
width and frequency , and .

These two filters constitute a quadrature pair, whererepre-
sents the unit orientation vector of the filter. This vector can be
defined in two or three dimensional space, where also ex-
tends to become the distance of the pixel position from the origin,
within the chosen dimension. The origin is generally chosen to

2The frequency range (spatial) can be adjusted to make the local energy func-
tion sensitive to particular sized features in the image.
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be the center of a 2-D image space, or the center of a 3-D image
volume (rather than a corner as is defined in standard images).

Local energy in higher dimensions is, thus, computed over a
set of orientations of these quadrature filter pairs in either 2-D or
3-D. This can be summarized by the following transformation
[10]:

(17)

Equation (17) can then be broken up into the following direc-
tional set of calculations:

(18)

(19)

(20)

(21)

(22)

Alternatively, the calculation may be performed in the fre-
quency domain where real and imaginary processing may be
achieved simultaneously through

(23)

where

(24)

(25)

(26)

Calculation in the frequency domain can save vast amounts of
time, especially when working in 3-D with the number of voxels
in the order of 10. This vast amount of data would make convo-
lutional computation in real space extremely time consuming.

F. Morlet Filter Construction

The even and odd Morlet filters and , as
defined in (21) and (22), are combined to form a singlecomplex
Morlet filter for each orientation in either 2-D or 3-D
space.

The filter is made to be equal in size to the original image.
A 2-D image of size 256 256 pixels, for example, requires
a Morlet filter of size 256 256 pixels to be built. This size
is preserved when the FT is taken of each, allowing the two
resulting frequency domain matrices to be multiplied directly.3

This also applies to the 3-D case.
The difference between Morlet wavelets created in 2-D space

and 3-D space lies in both the definition of the direction vector
, and the distance of the vector(measured from the center of

the filter to each pixel in the filter).
In both the 2-D and 3-D case, a loop traverses through the

filter (after it has been allocated memory and its locations ini-
tialized to zero) and iterates once for each frequency in the de-
sired filter bank. At each pixel location in a traverse, the real and
imaginary Morlet values at the current frequency are calculated,

3Multiplication is not matrix multiplication, but rather, point-to-point.
For example, in two dimensions,I(u; v)G(u; v); in three dimensions,
I(u; v;w)G(u; v; w).

based on (15) and (16), and added to the complex Morlet value
at that location. When the loop has been traversed for every fre-
quency, the resulting filter represents the sum of scaled Morlet
wavelets forming .

Frequencies are chosen according to the parameters
(frequency separation) and (number of frequencies).
They are used to form a set ofscaledfrequencies, where each
frequency is given by

(27)

where .
Manual tuning of these parameters was necessary so that the

Morlet filters could be chosen to be sensitive to the size of ex-
pected features in the image. This involved adequate choice of

, , and . If or were too small (i.e., or
), aliasing would occur in the filtering process. This is

analogous to insufficient sampling of frequencies in the original
image, and produces a distorted version of the original image
rather than a local energy distribution as the result.

V. RESULTS

A. Simulation Resources

Simulations conducted in this experiment were performed
on an 18-slice 256 256 pixel image volume of chromosomes
taken from aPaphiopedilum(orchid root tip) specimen. The
chromosomes were imaged in mitotic metaphase, one of the
substages during cell division. The results from this 18-slice
dataset will be presented in this section. The original data was
prepared and supplied by the Physical Optics Department,
Sydney University.

The local energy testing process began with consideration
of 2-D single orientation local energy calculations performed
on individual slices in the image volume. The results are pre-
sented with representations of associated Morlet filters, giving
a more intuitive look at how the individual filters interact with
the image. The 2-D calculations were also conducted in order
to determine the set oftuningparameters necessary to achieve
the best sensitivity to features in the image slices. Tuning these
parameters involved adequate choice of (the separation be-
tween frequencies in the filter bank), (the number of fre-
quencies or scaled wavelets in the filter bank), and(the ratio
between the filter width and each frequency).

The simulations were then extended to calculation in multiple
2-D orientations, and finally, to three dimensions. The 3-D cases
were then compared, on the slice level, with the 2-D results, in
order to view any improvements offered by considering axial
information in the image volume. Finally, the 3-D local energy
results were used as features in four SOFM simulations. Each
simulation using a different combination of image features de-
scribing the 3-D dataset.

B. Local Energy—Single Orientation Results

Fig. 8 shows a series of single orientation calculations made
on the eighth slice in the 18-slice dataset, along with the asso-
ciated Morlet filter in their calculation. The tuning parameters
described in Fig. 8 were used in subsequent calculations per-
formed in multiple directions, in both the 2-D and 3-D cases.
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Fig. 8. Single orientation 2-D calculations of local energy on the eighth slice of the 18-slice dataset. The Morlet filters used in each local energy calculation are
shown in the middle column, with their associated orientation in the 1st column. It is evident that particular directions pick out more information than others. The
associated tuning parameters were:fsep = 1.2,fnum = 5, andk = 0.5.

C. Local Energy—Multiple Orientation Results

Fig. 8 shows a comparison between two local energy cal-
culations made in multiple orientations. Fig. 9(a) shows the
2-D case, where local energy was calculated across 20 equally
spaced orientations in 2-D space. Fig. 9(b) shows the same slice
in the image volume, however, it is now the result of having
performed a local energy calculation in 20 orientations in 3-D
space, thereby considering information across image planes
(slices). By considering the extra information available in the
axial direction of the image volume, the 3-D case was expected
to show greater ability to reject spurious changes in intensity in

the original image than may have been picked up in any single
2-D filtered direction.

As is evident in these results, the 3-D calculation in Fig. 9(b)
gives far superior extraction of the local energy distribution.
The noise-likesignal present in the 2-D result [Fig. 9(a)], due
to slight intensity variations in the background, is effectively
rejected in the 3-D case. This occurs as a direct result of the
fact that the energy defining the chromosome locations is much
greater in the 3-D case. As a result, immediate improvements in
the subtleties of surface variations can be seen over the initial
Hilbert transformed slice of Fig. 1(c), including variations that
could only be detected in the axial (third) dimension.
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(a) (b)

Fig. 9. Comparison of two 20-orientation calculations of local energy. The first (a) uses 20 orientations in 2-D space, while the second (b) uses 20 orientations
in 3-D space. The 3-D case shows a clear improvement in the definition of local energy as distributed through the image volume.

(a) (b)

(c) (d)

Fig. 10. Segmentation results of the ninth slice of the 18-slice dataset for four test cases. 3-D segmentation was performed using a 4� 4 neural map. The two
images for each test case are shown: (i) shows the raw output of the SOFM, showing 4� 4= 16 different colors each representing a surface feature tuned by a single
neuron; (ii) shows the same segmentation, with the unwanted intensities (surfaces) removed, revealing the chromosome structures. (a) Case 1—uses pixel intensity,
mean, and variance. (b) Case 3—uses pixel intensity, local energy, and variance. (c) Case 2—uses pixel intensity, mean, and local energy. (d) Case 4—uses local
energy (LE), mean of LE, and variance of LE.

D. SOFM Segmentation

Primary simulations were conducted on four test cases of the
18-slice dataset for the purpose of examining the effects on the
segmented result due to different combinations of input features.
The four test cases were created. The sets of features (each three-
fold) used in each test case were as follows.

Case 1: {pixel intensity (PI), localized mean (M), localized
variance (V)};

Case 2: {PI, M, local energy (LE)};
Case 3: {PI, LE, V};
Case 4: {LE, localized mean of LE, localized variance of

LE}.
At this point, we make note that case 1 represents a resimula-

tion of previous work conducted by Nguyen [8]. This is done

for the purpose of evaluating the advantages of the different
methods. Due to the nature of 3-D visualization (performed
later), this is an essential step for unbiased visual inspection.
As such it is possible to make comparisons across all simula-
tions viewing each from a similar aspect with similar rendering
conditions.

The SOFM was run in two consecutive stages according to
the following parameters:

First phase:

no. Cycles
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(a) (b)

(c) (d)

Fig. 11. (a) Case1—Volume visualization of an 18-slice data set of orchid root tip chromosomes after segmentation using a 4� 4 SOFM and case 1 image statis-
tics. (b) Case 2—Volume visualization of an 18-slice data set of orchid root tip chromosomes after segmentation using a 4� 4 SOFM and case 2 image statistics.
(c) Case 3—Volume visualization of an 18-slice data set of orchid root tip chromosomes after segmentation using a 4� 4 SOFM and case 3 image statistics.
(d) Case 4—Volume visualization of an 18-slice data set of orchid root tip chromosomes after segmentation using a 4� 4 SOFM and case 4 image statistics.

Second phase:

no. Cycles

where 3, 5.
Fig. 10 shows the ninth slice of the thin dataset, after each

application of the SOFM process using the different definitions
of feature space (denoted by cases 1–4 as defined above).

The SOFM structure for these simulations uses a 44
neural map. The map, thus, categorizes pixels into 16 different
categories, each representing a characteristic surface type in the
original image. The image slices, as presented in Fig. 10, were
examined using the graphical program. This preliminary

form of evaluation involved manually removing the surface
types that were not associated with the chromosome bodies.
This was achieved by visual inspection, i.e., by setting the
intensity values in the image corresponding to nonchromosome
surfaces to black, while keeping the others. The resulting
image slices with unwanted surfaces removed, are also shown
in Fig. 10, and give some indication as to the success of each
particular feature set in influencing the final segmentation.

There are two main points that can be drawn from a compar-
ison of these 2-D slices. The first is that when local energy is
used as a feature, more greylevels are mapped to the chromo-
some regions. This means that more of the neurons are tuning
themselves to orientations in feature space that represent char-
acteristic features of the chromosomes. The second point is that
when local energy is used, there is higher correlation between
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the numberof greylevels assigned to the different surface fea-
tures on the chromosomes [Fig. 10(b)–(d) (i)], as opposed to
surface features in the background. Thus, revealing an image
in which the chromosome regions are immediately more distin-
guishable.

All of these results, as viewed on a 2-D basis, however, fail to
adequately portray the 3-D nature of the resulting chromosome
structures. The ultimate aim of this experiment was to perform
the segmentation in order that these resultant images could be
viewed in their 3-D state. This is achieved through use of the
software packageVoxelView, which provides an environment
for volume rendering three-dimensional data.

Fig. 11(a)–(d) shows 3-D rendered results of each of the four
simulations conducted using the 44 neural map. In each case,
a front view of the rendered result is presented. These images
form the basis for sets of stereo pair images, each taken from a
different angle of view, which can be viewed through stereo-vi-
sion spectacles, highlighting the true 3-D nature of the chromo-
somes within.

In Fig. 11(a) and (b), which incorporates the mean of
the original pixel intensities, the segmentation tends to blur
or reveal somewhat coagulated chromosome bodies, with
Fig. 11(b), (using local energy) revealing slightly more surface
detail. Fig. 11(d), using only LE based statistics, produced
an extremely highly detailed result, showing very dramatic
(perhaps exaggerated) variations across the chromosome
surfaces. This result reflects the hypersensitivity of the local
energy function to different feature profiles in the image.

Finally, Fig. 11(c), using local energy and variance, depicts a
dramatic improvement in clarity of the fine structure of the chro-
mosomes, to the point where the two components making up a
chromosome (known assister chromatids) are visibly twisted
or coiled together, in some places bunched up—a property con-
sistent with the stage of cell mitosis in which the chromosomes
were imaged.

VI. CONCLUSION

The use of the confocal microscope to image translucent
specimens such as chromosomes, allows for increased optical
sectioning across a specimen volume, aiding in the formation
of 3-D image data. The DIC mode used to produce the image
slices, however, requires further image processing in order that
the objects within the specimen volume can be extracted from
the image background. Kohonen’s SOFM is a neural network
approach to segmenting the chromosomes within the image
volume, resulting in adequate extraction of the chromosome
bodies, as well as resolving surface detail of their structure.
Local energy has been explored as a possible feature to be
used in directing the SOFM during segmentation, along with
other standard features such as original, mean and variance of
pixel intensities. Local energy has shown to be an extremely
effective feature for resolving surface details of chromosomes
from confocal DIC images beyond levels achieved in the past.
Visualization of chromosome images produced in this fashion is
possible, greatly enhancing the ability for biologists to observe,
in three dimensions, the intricate nature of plant chromosomes.
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